\qquad Date \qquad

Day 3 - Tangent Properties

Last unit, you learned that tangent lines intersect a circle in exactly one place. This leads to several theorems about tangent lines.

Tangent Circles are two coplanar circles that intersect at exactly one point. They may intersect internally or externally.

Common Tangent Lines are lines that are tangent to two circles.

Example: Draw any common tangent lines.

Other Points of Intersection:

Circles may also intersect at two or no points.

Two Points of Intersection

No Points of Intersection:

These circles are called
Concentric Circles. They have no points of intersection but they have the same center and different radii.

No Points of Intersection:
No points of intersection with different centers.

Tangent Theorems

Name	Theorem	Conclusion	
Perpendicular Tangent Theorem	Ine is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.		
Converse of Perpendicular Tangent Theorem	If a line is perpendicular to a radius of a circle at a point on the circle, then the line is tangent to the circle.	If two segments are Tangent Segments Theorem the same external point, then the segments are congruent.	

Example: Is AB tangent to Circle C?

Example: Find the length of $R Q$.
Example: Find x .

Example: Find perimeter of triangle $A B C$.

Example: Find DF if you know that DF and DE are tangent to $\odot C$.

