Notes

Day 1 -	Chord	Properties	and Se	egment	Lengths
---------	-------	-------------------	--------	--------	---------

Name	Theorem	Hypothesis	Conclusion
Congruent Angle- Congruent Chord Theorem	Congruent central angles have congruent chords.		
Congruent Chord- Congruent Arc Theorem	Congruent chords have congruent arcs.		
Congruent Arc- Congruent Angle Theorem	Congruent arcs have congruent central angles.		

Example: Find the measure of arc HY and HYW.

Example: Find the measure of angle DEF.

Example: Answer the following:

- 1. If $mAB = 110^\circ$, find mBC.
- **2.** If $\widehat{mAC} = 150^\circ$, find \widehat{mAB} .

Name	Theorem	Hypothesis	Conclusion
Diameter-Chord Theorem	If a radius or diameter is perpendicular to a chord, then it bisects the chord and its arc. Sometimes, this creates a right triangle & you'll use Pythagorean Theorem.		
Converse of Diameter- Chord Theorem	If a segment is the perpendicular bisector of a chord, then it is the radius or diameter.		

Example: Find the measure of HT. Then find the measure of WA if you know XZ = 6.

Example: Find the measures of arc CB, BE, and CE.

Name	Theorem	Hypothesis	Conclusion
Equidistant Chord Theorem	If two chords are congruent, then they are equidistant from the center.	C X O Y	
Converse of Equidistant Chord Theorem	If two chords are equidistant from the center, then the chords are congruent.	D C X C	

Example: Find EF.

Segment Lengths

Name	Theorem	Hypothesis	Conclusion
Segment Chord Theorem	If two chords in a circle intersect, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the second chord.		

Example: Find x.

Example: Find x.

Example: Find x.

Example: Find x.

