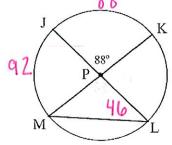
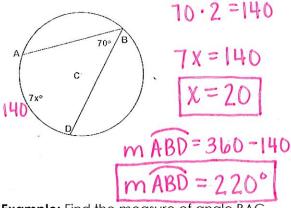

## Day 2 – Inscribed Angles and Inscribed Quadrilaterals

| Name            | Definition                                                                                                   | Measure                                                                         | Picture                      |
|-----------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|
| Inscribed Angle | An angle whose vertex is<br>on a circle and whose<br>sides contain chords of<br>the circle                   | The measure of an inscribed angle is half the measure of its intercepted arc.   | $\frac{1}{c} \frac{1}{2} mA$ |
| Intercepted Arc | An arc whose endpoints lie on the sides of an inscribed angle and all the points of the circle between them. | The measure of an intercepted arc is double the measure of the inscribed angle. | $a = 2m \angle ACC$          |

Example: Find the measure of angle ABD.




**Example:** Find the measure of arc AB and BC.



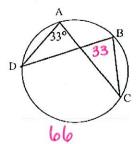

$$180 - 32 = 148$$
  
 $m\widehat{AB} = 148^{\circ}$   
 $m\widehat{BC} = 32^{\circ}$ 

**Example:** Find the measure of angle JLM.

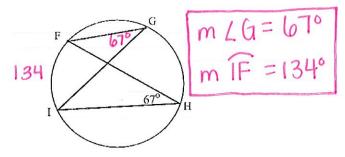


**Example:** Find the value of x and arc ABD.




**Example:** Find the measure of angle BAC.

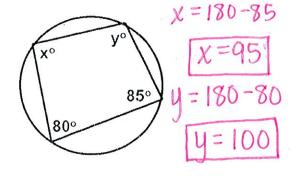



## Intercepted Arcs

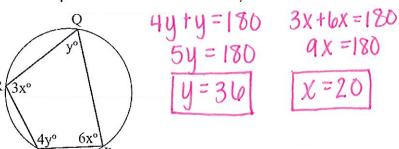
| Name                          | Theorem                                                                                        | Hypothesis                              | Conclusion                                                           |
|-------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|
| Intercepted Arcs<br>Corollary | If inscribed angles of a<br>circle intercept the<br>same arc, then the<br>angles are congruent | A B B B B B B B B B B B B B B B B B B B | IF ∠CAD intercepts of<br>and ∠CBD intercepts of<br>then ∠CAD = ∠CBD. |

**Example:** Find the measure of angle B.




**Example:** Find the measure of angle G and arc IF.




## **Inscribed Polygons**

| Name               | Theorem                                     | Hypothesis                         | Conclusion               |
|--------------------|---------------------------------------------|------------------------------------|--------------------------|
| Inscribed Polygons | A polygon whose vertices lie on the circle. | Opposite angles are supplementary. | m/A+m/C=18<br>m/B+m/D=18 |

**Example:** Find the value of x and y.



**Example:** Find the value of x and y.



**Example:** Can this quadrilateral be inscribed inside a circle?

$$34 + 146 = 180 \checkmark$$
  
 $97 + 83 = 180 \checkmark$ 

yes, it can, the opposite 83° angles are supplementary.