Unit 2 – Congruence & Pro	ots
---------------------------	-----

GSE Geometry Name: _

Notes

Day 7 – Triangle Proofs

Date:

•	Two-column geometric proofs are essentially just tables with	 on the left and	a k
	on the right.		

• The statements we make are going to be the ______ we take toward solving our problem.

• Reasons can consist of information given within the problem itself, definitions, postulates or theorems.

lf		Then the reason is
an angle or side is ALREADY marked on the picture, or if it is given in the directions,		
the shapes share a side		
parallel lines create alternate interior angles		
you see vertical angles		
one of the points is a midpoint of a line segment		
A line segment bisects a side		
A line segment bisects an angle		
the statement states that the triangles are congruent,		
the triangles have already been proven to be congruent, and now we are trying to prove a side or angle is congruent,		

Don't forget to ALWAYS mark your pictures!

Complete the following proofs:

Practice #1:

Given: ΔUXW and ΔUVW are right triangles, $\overline{UX} \cong \overline{UV}$

Prove: $\angle X \cong \angle V$

Statements	Reasons
1) ΔUXW and ΔUVW are rt. triangles	
2) $\overline{UX} \cong \overline{UV}$	
3) $\overline{UW} \cong \overline{UW}$	
4)	
$5) \ \angle X \cong \angle V$	

Practice #2:

Given: Y is the midpoint of $\overline{XZ}, \overline{AY} \cong \overline{BY}$, and $\angle AYX \cong \angle BYZ$. Prove: $\triangle XYA \cong \triangle ZYB$

Statements	Reasons	/	\setminus /
1) $\overline{AY} \cong \overline{BY}$			
2) $\angle AYX \cong \angle BYZ.$		^	У
3) Y is the midpoint of \overline{XZ}			
4) $\overline{XY} \cong \overline{YZ}$			
$5) \ \triangle XYA \cong \triangle ZYB$			

Practice #3:

Given: ${}_{\triangle}RTS$ is isosceles with legs \overline{RT} and \overline{TS} . Q is the midpoint of \overline{RS} Prove: ${}_{\triangle}RTQ \cong {}_{\triangle}STQ$

Statements	Reasons
1)	
2) $\overline{RT} \cong \overline{TS}$	
3)	
4)	
5)	
6) $\triangle RTQ \cong \triangle STQ$	

A A

Practice #4: Given: $\angle P \cong \angle N, \overline{PM} \cong \overline{NM}$ Prove: $\triangle PMK \cong \triangle NMQ$

Statements	Reasons	
1)		
2)		
3)		
4)		

<u>Practice #5</u>:

Given: $\angle L \cong \angle J, \overline{LM} \parallel \overline{KJ}$ Prove: $\triangle LKM \cong \triangle JMK$

Statements	Reasons
1)	
2)	
3)	
4)	
5)	

