Date:

Day 4 – Triangle Proofs

• Two-column geometric proofs are essentially just tables with <u>Statements</u> on the left and a reasons _ on the right.

• The statements we make are going to be the <u>Steps</u> we take toward solving our problem.

• Reasons can consist of information given within the problem itself, definitions, postulates or theorems.

If		Then the reason is
an angle or side is ALREADY marked on the picture, or if it is given in the directions,		given
the shapes share a side	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	reflexive property
parallel lines create alternate interior angles	A ∠BAC ≅ LDCA	alt. int. 2's are congruent alt. Int. 2s congruence postul
you see vertical angles	B C C D LACB = TECD	vertical Ls are =
one of the points is a midpoint of a line segment	CP ≅ BP	definition of a midpoint
A line segment bisects a side	$\bigcap_{C} B = \overline{CO} \cong \overline{BO}$	definition of a bisector
A line segment bisects an angle	CAO ≅ LBAO	aefinition of an angle bisect
the statement states that the triangles are congruent,		SSS, SAS, ASA, AAS, HL
the triangles have already been proven to be congruent, and now we are trying to prove a side or angle is congruent,		CPCTC

Don't forget to ALWAYS mark your pictures!

Complete the following proofs:

Practice #1:

Given: ΔUXW and ΔUVW are right triangles, $\overline{UX} \cong \overline{UV}$

Prove: $\angle X \cong \angle V$

Statements	Reasons
1) ΔUXW and ΔUVW are rt. triangles	given
2) $\overline{UX} \cong \overline{UV}$	given
3) $\overline{UW} \cong \overline{UW}$	reflexive property
⁴⁾ ∆UXW ≅ ∆UVW	HL congruence postwate
$5) \ \angle X \cong \angle V$	CPCTC

Practice #2:

Given: Y is the midpoint of $\overline{XZ}, \overline{AY} \cong \overline{BY}$, and $\angle AYX \cong \angle BYZ$.

Prove: $\triangle XYA \cong \triangle ZYB$

Statements	Reasons	\ /
1) $\overline{AY} \cong \overline{BY}$	given	$\sqrt{}$
2) $\angle AYX \cong \angle BYZ$.	given	у
3) Y is the midpoint of \overline{XZ}	given	
4) $\overline{XY} \cong \overline{YZ}$	definition of a midpoint	
5) $\triangle XYA \cong \triangle ZYB$	SAS congruence postula	te

Practice #3:

Given: $\triangle RTS$ is isosceles with legs \overline{RT} and \overline{TS} . Q is the midpoint of \overline{RS}

Prove: $\triangle RTQ \cong \triangle STQ$

Statements	Reasons
1) ARTS is isos. W/legs RT & TS	given
2) $\overline{RT} \cong \overline{TS}$	definition of isos.
$^{3)}$ Q is the midpoint of \overrightarrow{RS}	given
4) RQ ≅ SQ	definition of a midpoint
5) TQ ≅ TQ	reflexive property
6) $\triangle RTQ \cong \triangle STQ$	SSS congruence postulate

Practice #4:

Given: $\angle P \cong \angle N, \overline{PM} \cong \overline{NM}$

Prove: $\triangle PMK \cong \triangle NMQ$

Statements	Reasons
1) ∠ P ≅ ∠N	given
2) PM = NM	given
3) L PMK = LNMQ	vertical LS are =
$^{4)} \Delta PMK \cong \Delta NMQ$	ASA congruence postulate

<u>Practice #5</u>:

Given: $\angle L \cong \angle J, \overline{LM} \parallel \overline{KJ}$

Prove: $\triangle LKM \cong \triangle JMK$

Statements	Reasons
1) ∠L ≅ LJ	given
2) LM II KJ	given
3) ∠KML ≅∠MKJ	Alt. Int LS theorem
4) MK ≅ KM	Reflexive property
5) △LKM ≅ △JMK	AAS congruence postwate