\qquad Date

Day 2 - Triangles and Triangle Inequalities

Triangles can be classified by two categories: by Angles and by Sides.

Practice: Classify the triangles by sides and angles. Think About lt: Check which triangles are possible.

	Acute	Obtuse	Right
Scalene			
Isosceles			
Equilateral			

Side Inequality Theorem

Side Inequality Theorem: If one side of a triangle is longer than the other side, then the angle opposite the longer side has a greater measure than the angle opposite the shorter side.

This means: The largest angle of a triangle lies opposite the longest side. The smallest angle lies opposite the shortest side. If two angles are equal, their side lengths will be equal.

Example: List the sides from shortest to longest for each diagram.

Triangle Inequality Theorem

Triangle Inequality Theorem: The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

$a+b>c$
$a+c>b$
$b+c>a$

Example: Determine if it is possible to draw a triangle with side measures 12,11 , and 17 .

Practice:

For the triangle, list the sides in order from shortest to longest measure.
a.

b. $\ln \triangle S T U$ $m \angle S=50^{\circ}$ $m \angle T=70^{\circ}$ $\mathrm{m} \angle \mathrm{U}=60^{\circ}$

For the triangle, list the angles in order from smallest to largest measure.

$$
\text { a. } \begin{array}{ll}
\text { In } \Delta T U V \\
& U V=17 \\
T V=14 \\
T U=9
\end{array}
$$

b.

Determine if it is possible to draw a triangle with the following side measures:
a. $7,11,18$
b. $9,14,22$

