横山

Day 4 – Triangle Base Angles and Exterior Angles

A **triangle** is a figure formed when three noncollinear (not on the same line) points are connected by segments.

The sides are: EF, ED, DF

The vertices are: E.D. F

The angles are: LE, LD, LF

Opposite Side of ∠F: FD

Opposite Side of ∠E: DF

Opposite Side of ∠D: FF

<u>Triangle Sum Theorem</u>: The measures of the three interior angles in a triangle add up to be 180°

Isosceles Base Angle Theorem and Its Converse

Isosceles Triangle

Base Angles Theorem:

If two <u>sides</u> of a triangle are congruent, then the <u>angles</u> opposite them are congruent.

Converse of Base Angles Theorem:

If two angles of a triangle are congruent, then the sides opposite of them are congruent.

Examples:

A. Find the value of x

B. Find the m∠T

C. Find the value of x.

- D. Find the measure of <P.
- E. Find the measure of ∠Q
- F. Find the value of x & y.

Exterior Angle Theorem

Exterior angle theorem: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles of the triangle.

$$m \angle 1 + m \angle 2 = m \angle 4$$

Examples:

Α.

В.

C.

 $\chi = 14$