Day 6 - Properties of Rhombi, Squares, Trapezoids and Kites

In the previous lesson, we explored properties of parallelograms. To reiterate, a parallelogram is a type of quadrilateral that has two pairs of opposite sides that are parallel.

There are 5 theorems associated with PARALLELOGRAMS:

- Opposite sides are congruent
- Opposite angles are congruent
- Consecutive angles are supplementary

Parallelograms can be broken down into three more specific types of quadrilaterals (rectangles, rhombi, and squares) with the same properties as parallelograms. Today, we will specifically discuss Rhombi and Squares.

A Rhombus is a parallelogram with 4 sides.
\qquad

- Diagonals bisect each other
- Diagonals form two congruent triangles

A Square is a parallelogram with 4 congruent sides and 4 \qquad _.

As we learned with rectangles, these specific types of parallelograms also have some properties of their own:

Rhombus
- All properties of parallelograms
- Diagonals are perpendicular
- Diagonals bisect opposite angles
- Four sides are congruent

Square
- All properties of parallelograms
- Four right angles
- Four congruent sides
- Diagonals are congruent,
perpendicular, and bisect each other

In addition to the quadrilaterals above, we will discuss three more: Kites, Trapezoids, and Isosceles Trapezoids. Let us define them.
A Kite is a quadrilateral with $\mathbf{2}$ pairs of consecutive congruent sides, but opposites sides are \qquad parallel.

A Trapezoid is a quadrilateral with $\mathbf{1}$ pair of parallel sides called bases.
A Isosceles Trapezoid is a quadrilateral with 1 pair of parallel sides called bases and non-parallel sides are
\qquad (legs).

Special Properties:

Theorems of Quadrilaterals:

Kites:

If a quadrilateral is a kite, then its diagonals are perpendicular.

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

Trapezoids:

If a trapezoid is isosceles, then each pair of base angles is congruent.

Practice:

1. Solve for x and y.

2. Given the rhombus, find the length of $V Y$ and the measure of $\angle Z \mathrm{VY}$.

3. Solve for x and y.

4. Given the square, find the length of $E J, H F, m \angle E J F$, and $\mathrm{m} \angle \mathrm{HGF}$.

5. Solve for x and y.

