\qquad Date \qquad

Day 4 - Lines and Transversals

- Two lines are \qquad if they are coplanar and do not intersect.
- Lines that do not intersect and are not coplanar are called \qquad -
- \qquad lines are two lines that intersect at a right angle.
- A \qquad is a line that intersects two or more coplanar lines at different points.

Alternate Exterior Angles

Definition:

Two angles in the \qquad of the parallel lines and on sides.

Alternate Exterior Angles Theorem:

If 2 \qquad - \qquad are cut by a transversal, then the pairs of alternate exterior angles are \qquad _.

Other Alternate Exterior Angles:

Alternate Interior Angles

Definition:
Two angles in the \qquad of the parallel lines and on sides.

Alternate Interior Angles Theorem:

If 2 parallel lines are cut by a transversal, then the pairs of alternate interior angles are \qquad .

Other Alternate Interior Angles:

Consecutive (Same Side) Exterior Angles

Definition:
Two angles in the \qquad of the parallel lines and on
\qquad sides.

Consecutive (Same Side) Exterior Angles Theorem:

If 2 parallel lines are cut by a transversal, then the pairs of consecutive exterior angles are \qquad _.

Other Same Side Exterior Angles:

Consecutive (Same Side) Interior Angles

Definition:
Two angles in the \qquad of the parallel lines and on
\qquad sides.

Consecutive (Same Side) Interior Angles Theorem:

If 2 parallel lines are cut by a transversal, then the pairs of consecutive interior angles are \qquad _.

Other Same Side Interior Angles:

Corresponding Angles

Definition:

Two angles that lie in the \qquad -.

Corresponding Angles Postulate:

If 2 parallel lines are cut by a transversal, then the pairs of corresponding angles are \qquad -.

Other Corresponding Angles:

Perpendicular Transversal Theorem:

If a transversal is perpendicular to one of the two parallel lines, then it is \qquad to the other.

	Legend:	
\perp	Perpendicular (90 degrees)	
$\\|$	Parallel	

If $k|\mid l$ and $\dagger \perp k$, then \dagger \qquad 1.

Think of each segment in the diagram as part of a line. Identify the segments as parallel, skew, or perpendicular.

1. $A B$ and $D C$
2. $A B$ and $B C$
3. $B F$ and $F G$
4. $A B$ and $F G$

Identify the angles as corresponding, alternate interior, alternate exterior, or consecutive interior.
5. $\angle 3$ and $\angle 7$
6. $\angle 4$ and $\angle 10$
7. $\angle 5$ and $\angle 8$
8. $\angle 8$ and $\angle 6$
9. $\angle 9$ and $\angle 5$
10. $\angle 5$ and $\angle 7$

11.

12.

13.

14.

15.

16.

17. Given: $\ell \| m$

Prove: $\angle 1 \cong \angle 2$

