Day 4 – Lines and Transversals

- Two lines are if they are coplanar and do not intersect.
- Lines that do not intersect and are not coplanar are called ______.
- ______lines are two lines that intersect at a right angle.
- A ______ is a line that intersects two or more coplanar lines at different points.

Alternate Exterior Angles

Definition:

Two angles in the ______ of the parallel lines and on _____ sides.

Alternate Exterior Angles Theorem:

___ are cut by a transversal, then the pairs of alternate exterior angles are _____.

Other Alternate Exterior Angles:

Alternate Interior Angles

Definition:

_____ of the parallel lines and on Two angles in the _____ sides.

Alternate Interior Angles Theorem:

If 2 parallel lines are cut by a transversal, then the pairs of alternate interior angles are _____.

Other Alternate Interior Angles:

Consecutive (Same Side) Exterior Angles

Definition:

Two angles in the ______ of the parallel lines and on sides.

Consecutive (Same Side) Exterior Angles Theorem:

If 2 parallel lines are cut by a transversal, then the pairs of consecutive exterior angles are ______.

Other Same Side Exterior Angles:

Consecutive (Same Side) Interior Angles

Definition:

Two angles in the _____ of the parallel lines and on sides.

Consecutive (Same Side) Interior Angles Theorem:

If 2 parallel lines are cut by a transversal, then the pairs of consecutive interior angles are ______.

Other Same Side Interior Angles:

Corresponding Angles

Definition:

Two angles that lie in the______.

Corresponding Angles Postulate:

If 2 parallel lines are cut by a transversal, then the pairs of corresponding angles are _____.

Other Corresponding Angles:

Perpendicular Transversal Theorem:

If a transversal is perpendicular to one of the two parallel lines, then it is ______ to the other.

Legend:

Perpendicular (90 degrees)

Parallel

If $k \parallel l$ and $t \perp k$, then $t \perp l$.

Think of each segment in the diagram as part of a line. Identify the segments as parallel, skew, or perpendicular.

- 1. AB and DC
- 2. AB and BC
- 3. BF and FG
- 4. AB and FG

Identify the angles as corresponding, alternate interior, alternate exterior, or consecutive interior.

5. $\angle 3$ and $\angle 7$

8. $\angle 8$ and $\angle 6$

6. $\angle 4$ and $\angle 10$

9. \angle 9 and \angle 5

7. $\angle 5$ and $\angle 8$

10.∠5 and ∠7

11.

12.

13.

14.

15.

Given: $\ell \parallel m$ 17.

REASON

Prove: $\angle 1 \cong \angle 2$