\qquad

Day 3 - Angles and Angle Addition

Naming Angles and Lines

Two points are connected with a straight line. This line segment can be

A line does not have a beginning or end point. Lines are named using two points on the line. This line can be named $\overparen{V W}$ or $\overrightarrow{W V}$.
named $\overline{A B}$ or $\overline{B A}$.

Line Segment

Types of Angles

Acute Angles

Acute angles have measures between \qquad \& \qquad .

Obtuse Angles

Obtuse Angles have measures between \qquad \& \qquad _.

Right Angles
Right Angles measure exactly \qquad .

Straight Angles

Straight Angles measure exactly \qquad .

Practice

Complete the following:

1. Give an example of each: A line segment \qquad A line \qquad A ray \qquad
2. Name the angle represented with the number 1 using 3 letters.
3. Why can't you name it angle A? \qquad
4. Is this angle an obtuse, acute, or right angle? \qquad
5. If angle 1 is 60 degrees, what is the measure of angle 2? \qquad

Angle Vocabulary

Complementary Angles: Two or more angles whose sum of measures equals \qquad .
40° and 50° angles are complementary angles because $40^{\circ}+50^{\circ}=90^{\circ}$.
Example: A 30° angle is called the complement of the 60° angle.
Similarly, the 60° angle is the complement of the 30° angle.
Practice: Find the complement of each angle.
a. 35°
b. $\angle 1$ and $\angle 2$ are complementary. Find the value of x and the measure of both angles.

$$
\begin{aligned}
& \angle 1=5 x+2 \\
& \angle 2=2 x+4
\end{aligned}
$$

c. One of two complementary angles is 16 degrees less than its complement. Find the measure of both angles.

Supplementary Angles: Two or more angles whose sum of measures equals \qquad .
60° and 120° angles are supplementary angles because $60^{\circ}+120^{\circ}=180^{\circ}$.
Example: A 70° angle is called the supplement of the 110° angle.
Similarly, the 110° angle is the supplement of the 70° angle.
Practice: Find the supplement of each angle.
a. 126°
b. $\angle 1$ and $\angle 2$ are supplementary. Find the value of x and the measure of both angles.

$$
\angle 1=12 x+4
$$

$\angle 2=9 x+8$

Congruent Angles: Two or more angles with the \qquad measure. The geometric symbol that represents congruency is \qquad .

$\angle \mathrm{A}$ and $\angle \mathrm{B}$ are congruent angles.

Adjacent Angles: Two angles with a common \qquad and \qquad but no common \qquad

$\angle 1$ and $\angle 2$ are adjacent angles.

Linear Pair: Two adjacent (next to) angles whose noncommon sides are opposite rays. A linear pair also forms a line. LINEAR PAIRS ARE \qquad .
a. Name all the linear pairs in the diagram below:

Vertical Angles: Two nonadjacent angles that are formed by two intersecting lines. VERTICAL ANGLES ARE
\qquad -.
a. Name all the vertical angles in the diagram below:

Angle Bisector: A ray that divides an angle into two \qquad angles (two angles with equal measure).
a. $\overrightarrow{B E}$ is an angle bisector.
6. If $\mathrm{m} \angle \mathrm{ABE}=40^{\circ}$, then $\mathrm{m} \angle \mathrm{EBC}=$ \qquad
7. If $m \angle A B C=4 x-12$ \& $m \angle A B E=24^{\circ}$, then $x=$ \qquad .

Angle Addition Postulate: If point B lies in the interior of $\angle A O C$, then $m \angle A O B+m \angle B O C=m \angle A O C$.

