

a) 2.0

b) 4.5

Name:

Date:

EOC MULTIPLE CHOICE PRACTICE

c) 7.5

d) 8.0

6. Use this triangle to answer the question.

This is a proof of the statement "If a line is parallel to one side of a triangle and intersects the other two sides at distinct points, then it separates these sides into segments of proportional lengths." Which reason justifies step 2?

- a) Alternate interior angles are congruent.
- b) Alternate exterior angles are congruent.
- c) Corresponding angles are congruent.
- d) Vertical angles are congruent.

	Step	Justification
1	\overline{GK} is parallel to \overline{HJ}	Given
2	$\angle HGK \cong \angle IHJ$ $\angle IKG \cong \angle IJH$?
3	$\triangle GIK \sim \triangle HIJ$	AA similarity postulate

7. Parallelogram FGHJ was translated 3 units down to form parallelogram F 'G'H'J '. Parallelogram F 'G'H'J ' was then rotated 90° counterclockwise about point G' to obtain parallelogram F "G"H"J ".

Which statement is true about parallelogram FGHJ and parallelogram F "G"H"J "?

- a) The figures are both similar and congruent.
- b) The figures are neither similar nor congruent.
- c) The figures are similar but not congruent.
- d) The figures are congruent but not similar.
- 8. Consider the triangles shown.

Which can be used to prove the triangles congruent? a) SSS b) ASA c) SAS

d) AAS

9. In this diagram, $\overline{DE} \cong \overline{JI}$ and $\angle D \cong \angle J$.

Which additional information is sufficient to prove that ΔDEF is congruent to ΔJIH ?

- a) $\overline{EF} \cong \overline{IH}$ b) $\overline{DH} \cong \overline{JF}$ c) $\overline{HG} \cong \overline{GI}$ d) $\overline{HF} \cong \overline{JF}$
- 10. In this diagram, STU is an isosceles triangle where \overline{ST} is congruent to \overline{UT} . The paragraph proof shows that $\angle S$ is congruent to $\angle U$.

It is given that \overline{ST} is congruent to \overline{UT} . Draw \overline{TV} that bisects $\angle T$. By the definition of an angle bisector, $\angle STV$ is congruent to $\angle UTV$. By the Reflexive Property, \overline{TV} is congruent to \overline{TV} . $\triangle STV$ is congruent to $\triangle UTV$ by SAS. $\angle S$ is congruent to $\angle U$ by $\underline{?}$.